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Two-color nonlinear localized photonic modes
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We analyze second-harmonic generation~SHG! at a thin effectively quadratic nonlinear interface between
two linear optical media. We predict multistability of SHG for both plane and localized waves, and also
describetwo-color localized photonic modescomposed of a fundamental wave and its second harmonic
coupled together by parametric interaction at the interface.@S1063-651X~99!51307-X#

PACS number~s!: 42.65.Tg, 41.20.Jb, 42.65.Jx, 42.65.Ky
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Cascaded nonlinearities of noncentrosymmetric opt
materials have become an active topic of research over
last years due to their potential applications in all-opti
switching devices@1#. Parametric interaction is known als
to support solitary waves, in particularspatial quadratic soli-
tons, which are two-frequency self-trapped beams consis
of a fundamental wave parametrically coupled to its sec
harmonic@2#. Usually, solitary waves are considered for h
mogeneous media where spatial localization is induced
self-focusing and self-trapping effects. However, localiz
modes can exist even in a linear medium at defects or in
faces, and they are known as linear defect or interf
modes. The properties ofnonlinear defect modesare usually
analyzed for nonresonant Kerr-type nonlinearities@3#. Here
we consider a qualitatively different situation and introdu
another type of nonlinear defect mode: atwo-frequency (or
two-color) localized photonic mode, where the energy is lo
calized due to the parametric wave mixing induced by
interface between two linear optical media or a thin lay
with a quadratic~or x (2)) nonlinearity embedded in a linea
bulk medium.

The physical motivation for our model is twofold. First o
all we point out a fundamental property of inhomogeneo
nonlinear optical media. Let us consider an interface betw
two semi-infinite bulk optical media, which are eith
clamped together or separated by an infinitely thin layer
the bulk medium has inversion symmetry, then its quadr
nonlinearity must vanish. However, the interface breaks
symmetry and therefore the interface nonlinearity sho
possess anonvanishing quadratic response, due to a nonzero
contribution from the spatial derivatives of the electric fie
@4#.

Second, there exists a strong experimental evidenc
second-harmonic generation~SHG! in localized photonic
modes. For example, recent experimental results@5# reported
SHG in a truncated one-dimensional periodic photonic ba
gap structure, in which a nonlinear defect layer was emb
ded. An enhancement of the parametric interaction in
vicinity of the defect was observed, suggesting that S
occurs in local modes, while being completely suppres
for other propagating modes. If the band gap of the perio
structure is wide, we can describe this SHG process b
model with a local quadratic nonlinear defect.

The main purpose of this Rapid Communication is to
troduce and study an analytically solvable model for SHG
PRE 601063-651X/99/60~1!/41~4!/$15.00
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nonlinear localized modes, based on the~induced or inher-
ent! quadratic nonlinearity of an interface separating tw
~generally different! linear bulk media or a thin nonlinea
defect layer embedded in a bulk medium. In particular,
describetwo-color localized nonlinear defect modeswhere
the energy localization occurs due to parametric coupling
the interface.

We consider a fundamental frequency~FF! wave propa-
gating along theZ direction in a linear slab waveguide, a
shown in Fig. 1. We assume that an interface~or defect
layer! at x50 possesses a quadratic nonlinear response
that the FF wave can parametrically couple to its seco
harmonic~SH! at the interface@4#. The coupled-mode equa
tions for the complex envelope functionsEj (x,Z) ( j 51,2)
can then be written in the form

i
]E1

]Z
1D1

]2E1

]x2
1n1~x!E11G1~x!E1* E250,

~1!

i
]E2

]Z
1D2

]2E2

]x2
1n2~x!E21G2~x!E1

250,

whereD j are diffraction coefficients (D j.0). For the geom-
etry shown in Fig. 1 and the approximation of an infinite
thin interface layer~valid when the width of the layer is

FIG. 1. Scattering of a plane FF wave~dashed line! on a x (2)

interface between two linear media 1 and 2. The generated
~solid line! can be either propagating or localized.
R41 ©1999 The American Physical Society
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much smaller than the FF wavelength!, we take nj (x)
5n0 j (x)1k jd(x) andG j (x)5g jd(x), whereg j are the non-
linearity coefficients,k j account for the phase velocity dif
ferences in the layer and bulk materials, andn0 j (x)5n0 j

1 , for
x.0, andn0 j (x)5n0 j

2 , for x,0.
In order to reduce the number of parameters we norma

Eqs. ~1! as follows: E1(Z)5u(z)/Ag1g2, E2(Z)
5v(z)/g1 , s5D2 /D1 , a15k1 /D1, and a25k2 /D1,
wherez5Z/D1 is measured in units ofD1. Then the coupled
equations take the form

i
]u

]z
1

]2u

]x2
1n1~x!u1d~x!~a1u1u* v !50,

~2!

i
]v
]z

1s
]2v

]x2
1n2~x!v1d~x!~a2v1u2!50,

where n j (x)5n j
15n0 j

1 /D1, for x.0, and n j (x)5n j
2

5n0 j
2 /D1, for x,0. If the mismatch 2n01

6 2n02
6 is small then

s51/2 is a good approximation, which we use below in t
numerics. The system~2! conserves the Hamiltonian

H5E
2`

1` H U]u

]xU
2

1
s

2 U]v
]xU

2

2n1~x!uuu22
n2~x!

2
uvu2

2d~x!Fa1uuu21
a2

2
uvu21Re~u2v* !G J dx,

and the total powerP5*2`
1`(uuu21uvu2)dx for spatially lo-

calized or periodic solutions.
Scattering problem. To analyze the scattering process w

use that Eqs.~2! are linear forxÞ0, and write the total field
as a superposition of plane waves,

u~x,z!5H a1e2 il1z1 iq1
2x1b1e2 il1z2 iq1

2x; x,0

c1e2 il1z1 iq1
1x; x.0,

v~x,z!5H b2e2 il2z2 iq2
2x; x,0

c2e2 il2z1 iq2
1x; x.0,

where a1 , b1, and c1 are the amplitudes of the inciden
reflected, and transmitted FF waves, respectively. Co
spondingly,b2 and c2 are the amplitudes of the generat
SH waves on both sides of the interface. The dispersion
lations are then given by

l15~q1
6!22n1

6 , l25s~q2
6!22n2

6 , ~3!

and the continuity condition atx50 yields the relationsa1
1b15c1 andb25c2. Next, integrating Eqs.~2! over an in-
finitely small segment around the interface, we obtain
relations between the field derivatives on opposite side
the layer,
e

e-

e-

e
of

2@]u/]x#20
105~u* v1a1u!ux50 ,

~4!
2s@]v/]x#20

105~u21a2v !ux50 .

This gives the phase-matching condition 2l15l2, which is a
general requirement for stationary propagation of FF and
without energy exchange, and two algebraic relations for
amplitudes,

2 i ~q1
21q1

1!c112iq1
2a15c1* c21a1c1 ,

~5!
2 is~q2

21q2
1!c25c1

21a2c2 .

All unknown parametersq1
1 , q2

6 , l j , bj , andcj can now
be expressed in terms of the amplitudea1 and transverse
wave numberq1

2 of the incident FF wave.
The SH amplitude at the interface is determined from E

~5!,

c252c1
2/@a21 is~q2

21q2
1!#. ~6!

The wave numbers are found from the phase-matching c
dition 2l15l2 and the dispersion relations~3!,

q1
15A~q1

2!21n1
12n1

2,
~7!

q2
65A@2~q1

2!21n2
622n1

2#/s.

These values can be either real or imaginary, correspon
to plane waves and waves that are spatially localized at
interface, respectively. Note that the sign of the wave nu
bers is fixed according to the predefined geometry of
problem~see Fig. 1!.

Multistability. Substituting Eq.~6! into Eq. ~5! we obtain
the characteristic equation for the FF wave intensityuc1u2 at
the interface,

uc1
6u22uc1

4uRe~ ã1ã2!1uc1
2uuã1ã2u254ua1u2uã1ã2u2, ~8!

where ã15a11 i (q1
21q1

1) and ã25a21 is(q2
21q2

1).
Equation~8! is cubic in uc1u2, and thusthree different roots
may exist for a given input intensityua1u2, corresponding to
three different values of the amplitudes at the interface,
shown in Fig. 2~a!. This describes amultistableSHG pro-
cess.

To study the stability of these solutions we investigate
corresponding linearized problem, similar to the analysis o
different problem in Ref.@6#. It is convenient to choose th
perturbation functions with profiles which remain se
similar upon propagation in the inhomogeneous mediu
Then it can be demonstrated that the growth rate
nonoscillatory instability modes vanishes at the turni
points ]ua1u2/]uc1u250. We have verified numerically tha
the growth rate is positive on the branch with negative slo
@dashed line, Fig. 2~a!#, meaning that the corresponding s
lutions are unstable. However, a rigorous stability analysis
all nonlinear modes is beyond the scope of this paper.

Let us consider the simplest possible example, in orde
illustrate the characteristic physical properties of the syst
We choose the case where the linear media 1 and 2 on
side of the interface~see Fig. 1! are identical, i.e.,n j

65n j . It
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then immediately follows from Eqs.~7! that qj
65qj . This

means that the SH can exist in two different states, propa
ing or localized, whereas the FF waves are always propa
ing. The localized SH state can only be observed ifb.0,
and then only for FF wave numbers less than a critical va
q1,Ab/2, whereb[2n12n2. Note that localization does
not depend on the wave amplitudes.

For fixed material parametersa j and b the multistable
SHG regime can only be observed in certain regions of
input parametersq1 and ua1u2, as illustrated in Fig. 2~b!.
Importantly, multistability can be found for both propagatin
~region I! and localized~region II! SH waves. For other val
ues of the material parameters the multistable scatte
might be observed for a single type of the SH waves, or o
a single-state field configuration may be possible.

In Fig. 3 we summarize the different SHG regimes
terms of the material parameters. The diagrams are prese
for a1561, but they are invariant to the scalingb
→b/a1

2, a2→a2 /ua1u, meaning that they can characteri
the multistability regions for anya1.

Nonlinear localized modes. As mentioned above, in th
scattering of a plane FF wave, the transmitted FF and ge
ated SH waves can be either propagating or localized. H
ever, the situation where all the FF and SH waves are lo
ized is also possible. Thesetwo-frequency nonlinear
localized modesare of significant physical interest. To fin
stationary solutions for these modes we assume the foll

FIG. 2. ~a! Dependence of incident FF intensityua1u2 on FF
intensity at the layeruc1u2, illustrating existence of multistability
~b! Regions of multistability in (q1 ,ua1u2) space for a151,
a250.15, andb50.02. The three SH solutions are propagati
~region I! or localized~region II!. Only one solution exists outsid
regions I and II. The dashed lineq150.09 corresponds to the cas
shown in~a!.

FIG. 3. Regions I–III in (b,a2) space fora1561 where mul-
tistability can be observed. In region I all three SH states are pro
gating, in II they can be either propagating or localized, and in
they are all localized. The marked point corresponds to the c
presented in Fig. 2.
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ing conditions in the general scattering problem:~i! no inci-
dent plane wave, i.e.,a150, and ~ii ! all transverse wave
numbers are imaginary,qj

65 im j
6 , wherem j

6 are real and
positive ~as the wave amplitudes should vanish at infinit!.
Then the amplitudes at the interface areuc1u25(m1

21m1
1

2a1)@s(m2
21m2

1)2a2# and c25m1
21m1

12a1. Note that
here only one wave number is arbitrary, all others are de
mined by Eq.~7!. Such localized states can exist for an
combination of material parameters. Some examples are
sented in Figs. 4~a! and 4~b!.

For the symmetric case, wheren j
65n j andm j

65m j , the
total powerP5uc1u2/m11uc2u2/m2 can be written as a func
tion of m1 only. The dependenceP(m1) has always, for any
values of the material parameters, a branch with posi
slope. Under certain conditions a second branch with ne
tive slope may appear. This branch corresponds to sma
values of m1 and larger values of the HamiltonianH, as
shown in Figs. 4~c! and 4~d! with dashed lines. Thus we ma
conclude that for two bistable states the one with lowerm1
~i.e., higherH and negative slope]P/]m1,0) is unstable.
For other values of the material parameters the power ran
corresponding to branches with positive and negative sl
may not fully overlap, or there can even be a gap.

Let us consider the generation of a stable two-color loc
ized mode by launching a localized FF wave at the interfa
As the first step in the analysis of the dynamical problem
consider a simplified case, assuming that both the amplit
and phase velocity of the FF pump wave at the interface
constant. This is a reasonable approximation, if the initial
wave is close to a stationary mode localized due to a lin
phase detuning at the layer~characterized bya1), and the
generated SH wave remains small~essentially an undeplete
pump approximation!. For such a case, the original syste
~2! can be reduced to a single equation for the SH wave

a-
I
se

FIG. 4. ~a! and ~b! Intensity profiles of two different localized
states with the same powerP520 ~FF, dashed line, SH, solid line!.
~c! PowerP(m1) with two branches.~d! HamiltonianH vs powerP.
The unstable branch is depicted with a dashed line. Pointsa andb
mark the modes shown in~a! and~b!, respectively. For all the plots
a15a2521, b52.
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i
]v
]z

1s
]2v

]x2
1n2v1d~x!~a2v1uc10

2 ue22il1z!50, ~9!

with the initial conditionv(0)50. In Eq. ~9! the initial in-
tensity of the FF wave at the interfaceuc10

2 u and its propaga-
tion constantl1 are fixed.

In the casea250, an exact solution of Eq.~9! can be
presented in the form,

v~x,z!5e22il1zE
0

z i uc10
2 u

2Aipsz
ei (2l11n2)zeix2/4szdz.

The expression under the integral describes decaying o
lations with the increase ofz. Thus, the amplitude of the
generated SH exhibits oscillations as the solution approa
asymptotically a stationary two-color localized state. W
have performed a number of numerical simulations~using a
fully implicit finite-difference method! with Gaussian initial

FIG. 5. Generation of a two-color localized mode~material pa-
rameters are the same as in Fig. 4!. Left: intensities of the FF
~dashed line! and SH ~solid line! modes at the interface. Righ
evolution of the excited SH. The input power isP.28 and the final
state is close to that shown in Fig. 4~b!.
ne

a

il-

es

profiles of the FF wave and found that in the general case
formation of localized modes is accompanied by the sa
kind of transitional oscillations, as shown in Fig. 5. Furthe
more, we also observed switching from a perturbed unsta
two-color localized mode, such as that shown in Fig. 4~a!, to
a stable one. In the evolution process some energy is r
ated, and the power corresponding to the localized mod
decreased accordingly. Thus, a stable localized mode
only be generated, if initial power is above the thresho
Pth5minm1

P(m1).

In conclusion, we have introduced an analytically so
able model for SHG in localized modes and predicted
existence of two-color nonlinear localized photonic mod
supported by parametric interaction at an interface. Som
the properties of two-color localized modes, such as stabi
generation, and switching, show a remarkable similarity w
parametric solitons in homogeneous opticalx (2) media @2#
and their interaction with localized perturbations of the m
match parameter@7#. We believe that these results open
new class of problems in the theory of nonlinear wave pro
gation in inhomogeneous media with resonant nonlinearit
and they should be useful to understanding the fundame
difference between the effects produced by nonreson
Kerr-type nonlinearities and those induced by parame
wave interaction. For example, the analysis of localiz
modes due to a singlex (2) defect is the first step towards th
theory of nonlinear modes and gap solitons in nonlinear p
tonic crystals@8# and the dynamics of the defect modes
such materials.

The authors are indebted to C. Soukoulis and R. Vilas
for useful discussions and comments. The work was parti
supported by the Department of Industry, Science, and To
ism ~Australia!.
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