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Two-color nonlinear localized photonic modes
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We analyze second-harmonic generatiSHG) at a thin effectively quadratic nonlinear interface between
two linear optical media. We predict multistability of SHG for both plane and localized waves, and also
describetwo-color localized photonic modesomposed of a fundamental wave and its second harmonic
coupled together by parametric interaction at the interfE8£063-651X%99)51307-X]

PACS numbss): 42.65.Tg, 41.20.Jb, 42.65.Jx, 42.65.Ky

Cascaded nonlinearities of noncentrosymmetric opticahonlinear localized modes, based on tiveduced or inher-
materials have become an active topic of research over then quadratic nonlinearity of an interface separating two
last years due to their potential applications in all-optical(generally different linear bulk media or a thin nonlinear
switching deviceg1]. Parametric interaction is known also defect layer embedded in a bulk medium. In particular, we
to Support So|itary waves, in particu|apatia| quadratic soli- describetwo-color localized nonlinear defect modedere
tons which are two-frequency self-trapped beams consistinghe energy localization occurs due to parametric coupling at
of a fundamental wave parametrically coupled to its secondhe interface.
harmonic[2]. Usually, solitary waves are considered for ho- ~We consider a fundamental frequen@F) wave propa-
mogeneous media where spatial localization is induced bgating along theZ direction in a linear slab waveguide, as
self-focusing and self-trapping effects. However, localizedshown in Fig. 1. We assume that an interfioe defect
modes can exist even in a linear medium at defects or intefayen atx=0 possesses a quadratic nonlinear response, so
faces, and they are known as linear defect or interfacghat the FF wave can parametrically couple to its second
modes. The properties obnlinear defect modesre usually —harmonic(SH) at the interfacg4]. The coupled-mode equa-
analyzed for nonresonant Kerr-type nonlinearifids Here tions for the complex envelope functioi§(x,Z) (j=1,2)
we consider a qualitatively different situation and introducecan then be written in the form
another type of nonlinear defect modetveo-frequency (or

two-color) localized photonic modevhere the energy is lo- JE; J°Eq *
calized due to the parametric wave mixing induced by an 'EJrDlﬁ’Lnl(x)Eﬁrl(x)El E.=0,
interface between two linear optical media or a thin layer (1)
with a quadratigor x(?)) nonlinearity embedded in a linear 9E S2E
bulk medium. |~ +Dy—2 +ny(X)Ep+ T'p(X)EZ=0,

The physical motivation for our model is twofold. First of 9z Ix?

all we point out a fundamental property of inhomogeneous . ) o

nonlinear optical media. Let us consider an interface betweeWhereD; are diffraction coefficients;>0). For the geom-
two semi-infinite bulk optical media, which are either €try shown in Fig. 1 and the approximation of an infinitely
clamped together or separated by an infinitely thin layer. Ithin interface layer(valid when the width of the layer is
the bulk medium has inversion symmetry, then its quadratic
nonlinearity must vanish. However, the interface breaks the
symmetry and therefore the interface nonlinearity should
possess aonvanishing quadratic responsgue to a nonzero
contribution from the spatial derivatives of the electric field
[4].

Second, there exists a strong experimental evidence o
second-harmonic generatiof8HG) in localized photonic
modes. For example, recent experimental regltseported
SHG in a truncated one-dimensional periodic photonic band-
gap structure, in which a nonlinear defect layer was embed
ded. An enhancement of the parametric interaction in the
vicinity of the defect was observed, suggesting that SHG
occurs in local modes, while being completely suppressed
for other propagating modes. If the band gap of the periodic
structure is wide, we can describe this SHG process by
model with a local quadratic nonlinear defect. FIG. 1. Scattering of a plane FF waveashed lingon a y(?

The main purpose of this Rapid Communication is to in-interface between two linear media 1 and 2. The generated SH
troduce and study an analytically solvable model for SHG in(solid line) can be either propagating or localized.
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much smaller than the FF wavelengthwe take n;(x) —[&u/ax]f8=(u*v+ a1u)|y_o,

=ng;j(X) + x;0(x) andI’;(x) = y;6(x), wherey; are the non- (4)
linearity c_oefﬁments,xj account for t_he phase velo+C|ty dif- — o[ avl9x]F 9= (U2 + av)|x—o-

ferences in the layer and bulk materials, @agg(x) = ng; , for

x>0, andng;(x) =ng;, for x<0. This gives the phase-matching condition;2=\ ,, which is a

In order to reduce the number of parameters we normalizgeneral requirement for stationary propagation of FF and SH
Egs. (1) as follows: E;(Z)=u(2)/\vyiv,, Ey(Z)  without energy exchange, and two algebraic relations for the
=v(2)/y,, 0=D,/D;, a;=k;/D;, and a,=«k,/D;, amplitudes,
wherez=Z/D, is measured in units d,. Then the coupled o o .
equations take the form —i(dy +0;)c1+2iq; a;=CICrt a;Cy,

)

Lo 2
) —io(gy +d;)Ca=Ci+asC,.

u
i—+—+ + +u*v)= +
92" o U+ 8X)(agutute) =0, All unknown parametersj; , g3 , \j, b;, andc; can now
2) be expressed in terms of the amplitude and transverse

wave numben]; of the incident FF wave.

J 52 . . . .
LN po(X)0 + 800 (g +U?) =0, The SH amplitude at the interface is determined from Eq.
. Co=—cillaztio(d; +d3)]. )

where vj(x)=v=ng/D;, for x>0, and vj(X)=v;
=ng;/Dy, for x<0. If the mismatch Bg;—ng, is small then  The wave numbers are found from the phase-matching con-
o=1/2 is a good approximation, which we use below in thedition 2\ ;=X\, and the dispersion relatior8),

numerics. The syster{?) conserves the Hamiltonian
+_ [(q—)\2 + -
qi = (ql) tvy —vy,

b ? ()
H=fm{ e —Vzéx)lvl2 dz =V[2(a;)%+v; —2v; o,
—8(X)

2 o

2

Ju
oX

Jv
X

to plane waves and waves that are spatially localized at the

interface, respectively. Note that the sign of the wave num-

bers is fixed according to the predefined geometry of the

and the total poweP = ["Z(|u|?>+|v|?)dx for spatially lo-  problem(see Fig. 1

calized or periodic solutions. Multistability. Substituting Eq(6) into Eqg. (5) we obtain
Scattering problemTo analyze the scattering process wethe characteristic equation for the FF wave intengity? at

use that Eqs(2) are linear forx# 0, and write the total field the interface,

as a superposition of plane waves,

] These values can be either real or imaginary, corresponding
dx

o
a|ul?+ ?2|U|Z+Re(u2v*)

|c3| —2|ciIRe(@y @) +|cil[ @ aal*=4lay | F @@l (8)
ape Marlii e M i x<0 where @;=a;+i(q; +9;) and a,=a,+io(q, +0;).
Cle—iMHiQIX; x>0, Equation(8) is cubic in|c,|?, and thusthree different roots

may exist for a given input intensitya, |2, corresponding to
. L three different values of the amplitudes at the interface, as
bye~h2z i X x<0 shown in Fig. 2a). This describes anultistable SHG pro-
cess.

To study the stability of these solutions we investigate the
corresponding linearized problem, similar to the analysis of a
where a;, b;, andc, are the amplitudes of the incident, different problem in Ref{6]. It is convenient to choose the
reflected, and transmitted FF waves, respectively. Correperturbation functions with profiles which remain self-
spondingly,b, andc, are the amplitudes of the generated similar upon propagation in the inhomogeneous medium.
SH waves on both sides of the interface. The dispersion reFhen it can be demonstrated that the growth rate for
lations are then given by nonoscillatory instability modes vanishes at the turning
points d|a,|%/d|c,|2=0. We have verified numerically that
the growth rate is positive on the branch with negative slope
[dashed line, Fig. @)], meaning that the corresponding so-
lutions are unstable. However, a rigorous stability analysis of
and the continuity condition at=0 yields the relationg,;  all nonlinear modes is beyond the scope of this paper.
+b;=c, andb,=c,. Next, integrating Eqs2) over an in- Let us consider the simplest possible example, in order to
finitely small segment around the interface, we obtain thdllustrate the characteristic physical properties of the system.
relations between the field derivatives on opposite sides dfVe choose the case where the linear media 1 and 2 on each
the layer, side of the interfacésee Fig. 1 are identical, i.e.p]-i= vi. It

u(x,z)z[

v(x,z)z[

Czefixzzﬂq;x; x>0,

N=(a1)%= v, Ap=o(dr)?— vz, )
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FIG. 2. (a) Dependence of incident FF intensilg,|* on FF !

intensity at the layefc,|?, illustrating existence of multistability. '

(b) Regions of multistability in §;,/a;|?) space fora;=1, ' o b

a,=0.15, andB=0.02. The three SH solutions are propagating & 207 a 201

(region |) or localized(region Il). Only one solution exists outside -

regions | and Il. The dashed lirgg =0.09 corresponds to the case

shown in(a).
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then immediately follows from Eq47) thatq; =q;. This o H

means that the SH can exist in two different states, propagat-

ing or localized, whereas the FF waves are always propagat-

ing. The localized SH state can only be observe@3if0,

and then only for FF wave numbers less than a critical valu
0:<VpB/2, where=2v,— v,. Note that localization does

not depend on the wave amplitudes.
For fixed material parameters; and S the multistable
SHG regime can only be observed in certain regions of théng conditions in the general scattering problein:no inci-

input parametersy; and |a,|?, as illustrated in Fig. @).

(region ) and localizedregion Il) SH waves. For other val-

a single-state field configuration may be possible.

—Bla3, a,—ayl|ay|, meaning that they can characterize

the multistability regions for any;.

FIG. 4. (a) and (b) Intensity profiles of two different localized

states with the same powBr=20 (FF, dashed line, SH, solid line
(c) PowerP(u1) with two branches(d) HamiltonianH vs powerP.

eThe unstable branch is depicted with a dashed line. Paimtsd b

mark the modes shown i@ and(b), respectively. For all the plots
aA1= 0= — 1,322

dent plane wave, i.ea;=0, and (i) all transverse wave
Importantly, multistability can be found for both propagating numbers are imaginar)qjizi,uji, Where,uji are real and
positive (as the wave amplitudes should vanish at infinity
ues of the material parameters the multistable scatteringhen the amplitudes at the interface ¢@|2:(MI+MI
might be observed for a single type of the SH waves, or only_ a)[o(ps +us)—as] andc,=pu; +ui —a;. Note that

- . . i . here only one wave number is arbitrary, all others are deter-
In Fig. 3 we summarize the different SHG regimes inpined by Eq.(7). Such localized states can exist for any

terms of the material parameters. The diagrams are presentggmpination of material parameters. Some examples are pre-
for a;==1, but they are invariant to the scaling

sented in Figs. @ and 4b).
For the symmetric case, wher¢ = v andu;" = pu;, the

_ ; _ _ total powerP =|c;|%/ w1+ |c,|?/ u, can be written as a func-

Nonlinear localized modesAs mentioned above, in the gn of u, only. The dependende(u,) has always, for any

scattering of a plane FF wave, the transmitted FF and gene{pyes of the material parameters, a branch with positive
ated SH waves can be either propagating or localized. Howsiope, Under certain conditions a second branch with nega-
ever, the situation where all the FF and SH waves are locakye siope may appear. This branch corresponds to smaller
ized is also possible. Theséwo-frequency nonlinear 5 es of u; and larger values of the Hamiltoniad, as

localized modesre of significant physical interest. To find gnown in Figs. &) and 4d) with dashed lines. Thus we may
stationary solutions for these modes we assume the followsnclude that for two bistable states the one with lower

(i.e., higherH and negative slopgP/du,;<0) is unstable.

20f =t O et For other values of the material parameters the power ranges
1.5 TR ET g’; / corresponding to branches with positive and negative slope
o, o may not fully overlap, or there can even be a gap.

1.01 -0.5¢ Let us consider the generation of a stable two-color local-
o5t -1.0¢ R ized mode by launching a localized FF wave at the interface.
R -1.5 As the first step in the analysis of the dynamical problem we

0.0 ' ' -20 : ' consider a simplified case, assuming that both the amplitude
~04 -02 %‘0 0.2 04 —04 -02 %.o 02 04 and phase velocity of the FF pump wave at the interface are
constant. This is a reasonable approximation, if the initial FF

FIG. 3. Regions |-l in ,,) space fora;=+1 where mul- Wave is close to a stationary mode localized due to a linear

tistability can be observed. In region | all three SH states are propaPhase detuning at the layécharacterized byr;), and the
gating, in Il they can be either propagating or localized, and in Illgenerated SH wave remains sm@sentially an undepleted
they are all localized. The marked point corresponds to the caspump approximation For such a case, the original system

presented in Fig. 2.

(2) can be reduced to a single equation for the SH wave,
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FIG. 5. Generation of a two-color localized mog@eaterial pa-
rameters are the same as in Fig. deft: intensities of the FF
(dashed ling and SH (solid line modes at the interface. Right:
evolution of the excited SH. The input powerRs=28 and the final
state is close to that shown in Fig(b}.

2
ia_v+0-&_v+v + O 2 | A= 2iN7y —
20+ 8(x)(azv +|cigle )=0, (9
0z (9)(2

with the initial conditionv(0)=0. In Eg.(9) the initial in-
tensity of the FF wave at the interfahefol and its propaga-
tion constant\, are fixed.

In the casea,=0, an exact solution of Eq9) can be
presented in the form,

S A2

- z il 2

— a—2iNZ i(2N1+vo) L pix“lAal

v(X,2)=e 1J’ - gltehimraleg d¢.
02\imal

profiles of the FF wave and found that in the general case the
formation of localized modes is accompanied by the same
kind of transitional oscillations, as shown in Fig. 5. Further-
more, we also observed switching from a perturbed unstable
two-color localized mode, such as that shown in Fig),40

a stable one. In the evolution process some energy is radi-
ated, and the power corresponding to the localized mode is
decreased accordingly. Thus, a stable localized mode can
only be generated, if initial power is above the threshold
Pin= minMl P(wq).

In conclusion, we have introduced an analytically solv-
able model for SHG in localized modes and predicted the
existence of two-color nonlinear localized photonic modes
supported by parametric interaction at an interface. Some of
the properties of two-color localized modes, such as stability,
generation, and switching, show a remarkable similarity with
parametric solitons in homogeneous optigaf’ media[2]
and their interaction with localized perturbations of the mis-
match parametef7]. We believe that these results open a
new class of problems in the theory of nonlinear wave propa-
gation in inhomogeneous media with resonant nonlinearities,
and they should be useful to understanding the fundamental
difference between the effects produced by nonresonant
Kerr-type nonlinearities and those induced by parametric
wave interaction. For example, the analysis of localized
modes due to a singlg(® defect is the first step towards the
theory of nonlinear modes and gap solitons in nonlinear pho-
tonic crystals[8] and the dynamics of the defect modes in

The expression under the integral describes decaying 0scik,ch materials.

lations with the increase of. Thus, the amplitude of the

generated SH exhibits oscillations as the solution approaches The authors are indebted to C. Soukoulis and R. Vilaseca
asymptotically a stationary two-color localized state. Wefor useful discussions and comments. The work was patrtially

have performed a number of numerical simulatiéusing a
fully implicit finite-difference methodwith Gaussian initial

supported by the Department of Industry, Science, and Tour-
ism (Australia).
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